Valérie Masson-Delmotte

OA - Liste

espace50x10

2024

The planetary boundaries concept presents a set of nine planetary boundaries within which humanity can continue to develop and thrive for generations to come

2023

This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidification is close to being breached, while aerosol loading regionally exceeds the boundary. Stratospheric ozone levels have slightly recovered. The transgression level has increased for all boundaries earlier identified as overstepped. As primary production drives Earth system biosphere functions, human appropriation of net primary production is proposed as a control variable for functional biosphere integrity. This boundary is also transgressed. Earth system modeling of different levels of the transgression of the climate and land system change boundaries illustrates that these anthropogenic impacts on Earth system must be considered in a systemic context.
For the first time, an international team of scientists is able to provide a detailed outline of planetary resilience by mapping out all nine boundary processes that define a safe operating space for humanity.

2022

Planetary Boundaries - summary and implications for policymakers 05.12.2022 Respecting planetary boundaries is essential to preserve the stability of ecosystems and human societies, including in Switzerland. Incorporating this principle into our legal system is consistent with the pursuit of our ...
Deaths from exposure to emissions from vehicles, smoke stacks and wildfires have increased by more than 50 percent this century, with poorer countries bearing the brunt of the impacts.
Estimates of how the different control variables for seven planetary boundaries have changed from 1950 to present. The green shaded polygon represents the safe operating space. Source: Steffen et al. 2015
We submit that the safe operating space of the planetary boundary of novel entities is exceeded since annual production and releases are increasing at a pace that outstrips the global capacity for assessment and monitoring. The novel entities boundary in the planetary boundaries framework refers to entities that are novel in a geological sense and that could have large-scale impacts that threaten the integrity of Earth system processes. We review the scientific literature relevant to quantifying the boundary for novel entities and highlight plastic pollution as a particular aspect of high concern. An impact pathway from production of novel entities to impacts on Earth system processes is presented.
There has been a 50-fold increase in the production of chemicals since 1950. This is projected to triple again by 2050

2021

Throughout Earth's history, CO2 is thought to have exerted a fundamental control on environmental change. Here we review and revise CO2 reconstructions from boron isotopes in carbonates and carbon isotopes in organic matter over the Cenozoic—the past 66 million years. We find close coupling between CO2 and climate throughout the Cenozoic, with peak CO2 levels of ∼1,500 ppm in the Eocene greenhouse, decreasing to ∼500 ppm in the Miocene, and falling further into the ice age world of the Plio–Pleistocene. Around two-thirds of Cenozoic CO2 drawdown is explained by an increase in the ratio of ocean alkalinity to dissolved inorganic carbon, likely linked to a change in the balance of weathering to outgassing, with the remaining one-third due to changing ocean temperature and major ion composition. Earth system climate sensitivity is explored and may vary between different time intervals. The Cenozoic CO2 record highlights the truly geological scale of anthropogenic CO2 change: Current CO2 levels were last seen ar

2020

Human activities are threatening to push the Earth system beyond its planetary boundaries, risking catastrophic and irreversible global environmental change. Action is urgently needed, yet well-intentioned policies designed to reduce pressure on a single boundary can lead, through economic linkages, to aggravation of other pressures. In particular, the potential policy spillovers from an increase in the global carbon price onto other critical Earth system processes has received little attention to date. To this end, we explore the global environmental effects of pricing carbon, beyond its effect on carbon emissions. We find that the case for carbon pricing globally becomes even stronger in a multi-boundary world, since it can ameliorate many other planetary pressures. It does however exacerbate certain planetary pressures, largely by stimulating additional biofuel production. When carbon pricing is allied with a biofuel policy, however, it can alleviate all planetary pressures. In the light of nine Earth Syst

Présélections :

Listing généré avec