Réseau Transition be

OA - Liste

Veille documentaire

. .


Pour voir les références d’un(e) auteur(e), cliquez sur son nom. Pour revenir à la page, utilisez le bouton refresh ci-dessous.

Cela fonctionne également avec les mot-clés de chaque référence.

filtre:
Global Change

juin 2025

Identifying the socio-economic drivers behind greenhouse gas emissions is crucial to design mitigation policies. Existing studies predominantly analyze short-term CO2 emissions from fossil fuels, neglecting long-term trends and other GHGs. We examine the drivers of all greenhouse gas emissions between 1820–2050 globally and regionally. The Industrial Revolution triggered sustained emission growth worldwide—initially through fossil fuel use in industrialized economies but also as a result of agricultural expansion and deforestation. Globally, technological innovation and energy mix changes prevented 31 (17–42) Gt CO2e emissions over two centuries. Yet these gains were dwarfed by 81 (64–97) Gt CO2e resulting from economic expansion, with regional drivers diverging sharply: population growth dominated in Latin America and Sub-Saharan Africa, while rising affluence was the main driver of emissions elsewhere. Meeting climate targets now requires the carbon intensity of GDP to decline 3 times faster than the global
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets (published at https://doi.org/10.5281/zenodo.15639576; Smith et al., 2025a) to produce updated estimates for key indicators of the state of the climate system: net emissions of greenhouse gases and short-lived climate forcers, greenhouse gas concentrations, radiative forcing, the Earth's energy imbalance, surface temperature changes, warming attributed to human activities, the remaining carbon budget, and estimates of global temperature extremes. This year, we additionally include indicators for sea-level rise and land precipitation change. We follow methods as closely as possible to those used in the IPCC Sixth Assessment Report (AR6) Working Group One report.
An international group of researchers has produced a third update to key indicators of the state of the climate system set out in the IPCC AR6 assessment, building on previous editions in 2023 and 2024. Forster et al. (2025) assess emissions, concentrations, temperatures, energy transfers, radiation balances, and the role of human activity and conclude that, while natural climate variability also played a role, the record observed temperatures in 2024 were dominated by human activity and the remaining carbon budget for 1.5° C is smaller than ever.
Recent simulations using the Community Earth System Model (CESM) indicate that a tipping event of the Atlantic Meridional Overturning Circulation (AMOC) would cause Europe to cool by several degrees. This AMOC tipping event was found under constant pre-industrial greenhouse gas forcing, while global warming likely limits this AMOC-induced cooling response. Here, we quantify the European temperature responses under different AMOC regimes and climate change scenarios. A strongly reduced AMOC state and intermediate global warming (C, Representative Concentration Pathway 4.5) has a profound cooling effect on Northwestern Europe with more intense cold extremes. The largest temperature responses are found during the winter months and these responses are strongly influenced by the North Atlantic sea-ice extent. Enhanced North Atlantic storm track activity under an AMOC collapse results in substantially larger day-to-day temperature fluctuations. We conclude that the (far) future European temperatures are dependent o

mai 2025

Societies increasingly rely on scientists to guide decisions in times of uncertainty, from pandemic outbreaks to the rise of artificial intelligence. Addressing climate change is no different. For governments wanting to introduce ambitious climate policies, public trust in climate scientists is pivotal, because it can determine whether voters support or resist those efforts.
Earth’s albedo (reflectivity) declined over the 25 years of precise satellite data, with the decline so large that this change must be mainly reduced reflection of sunlight by clouds. Part of the cloud change is caused by reduction of human-made atmospheric aerosols, which act as condensation nuclei for cloud formation, but most of the cloud change is cloud feedback that occurs with global warming. The observed albedo change proves that clouds provide a large, amplifying, climate feedback. This large cloud feedback confirms high climate sensitivity, consistent with paleoclimate data and with the rate of global warming in the past century.
Climate change is driving rising global temperatures, ecological degradation, and widespread human suffering. Yet, as a collective, humanity has failed to implement sufficient changes to mitigate these threats. This paper introduces the concept of “global narcissism” as a speculative lens to analyze the psychological barriers to climate action. By examining different levels of narcissism and their manifestations in human responses to climate change, this framework highlights key obstacles to meaningful action. While humanity is diverse, and lived experiences vary greatly, this perspective offers a way to discuss patterns of response and resistance. A central challenge lies in humanity’s difficulty in recognizing its symbiotic relationship with the non-human world. Through the metaphor of “global narcissism” this paper explores how humanity’s response to ecological crisis mirrors narcissistic defense mechanisms and suggests a collapse is taking place. This framework provides insights into how psychological int
Paper in Nature Climate Change journal reveals major role wealthy emitters play in driving climate extremes. The world’s wealthiest 10% are responsible for two-thirds of global heating since 1990, driving droughts and heatwaves in the poorest parts of the world, according to a study.

avril 2025

We investigate the probabilities of triggering climate tipping points under five Shared Socioeconomic Pathways (SSPs) and how they are altered by including the additional carbon emissions that could arise from tipping points within the Earth's carbon cycle. The crossing of a climate tipping point at a threshold level of global mean surface temperature (threshold temperature) would commit the affected subsystem of the Earth to abrupt and largely irreversible changes with negative impacts on human well-being. However, it remains unclear which tipping points would be triggered under the different SSPs due to uncertainties in the climate sensitivity to anthropogenic greenhouse gas emissions, the threshold temperatures and timescales of climate tipping points, and the response of tipping points within the Earth's carbon cycle to global warming. We include those uncertainties in our analysis to derive probabilities of triggering for 16 previously identified climate tipping points within the Earth system.

mars 2025

Morgan Stanley, JPMorgan and an international banking group have quietly concluded that climate change will likely exceed the Paris Agreement’s 2 degree goal.Top Wall Street institutions are preparing for a severe future of global warming that blows past the temperature limits agreed to by more than 190 nations a decade ago, industry documents show.
The ocean ecosystem is a vital component of the global carbon cycle, storing enough carbon to keep atmospheric CO2 considerably lower than it would otherwise be. However, this conception is based on simple models, neglecting the coupled land-ocean feedback. Using an interactive Earth system model, we show that the role ocean biology plays in controlling atmospheric CO2 is more complex than previously thought. Atmospheric CO2 in a new equilibrium state after the biological pump is shut down increases by more than 50% (163 ppm), lower than expected as approximately half the carbon lost from the ocean is adsorbed by the land. The abiotic ocean is less capable of taking up anthropogenic carbon due to the warmer climate, an absent biological surface pCO2 deficit and a higher Revelle factor. Prioritizing research on and preserving marine ecosystem functioning would be crucial to mitigate climate change and the risks associated with it.
The Antarctic Circumpolar Current (ACC) is the world's strongest ocean current and plays a disproportionate role in the climate system due to its role as a conduit for major ocean basins. This current system is linked to the ocean's vertical overturning circulation, and is thus pivotal to the uptake of heat and CO2 in the ocean. The strength of the ACC has varied substantially across warm and cold climates in Earth's past, but the exact dynamical drivers of this change remain elusive. This is in part because ocean models have historically been unable to adequately resolve the small-scale processes that control current strength. Here, we assess a global ocean model simulation which resolves such processes to diagnose the impact of changing thermal, haline and wind conditions on the strength of the ACC. Our results show that, by 2050, the strength of the ACC declines by ∼20% for a high-emissions scenario. This decline is driven by meltwater from ice shelves around Antarctica, which is exported to lower latit

février 2025

Climate change will set the parameters of our post-Princeton lives. The fires that devastated the Palisades earlier this month were, as our nation’s exasperated and exhausted climate scientists continue to remind us, only harbingers of the floods, tornados, and heatwaves to come. Global warming is surpassing the climate models that scientists built in the 2010s and early 2020s that already forecasted a borderline-apocalyptic future. Undoubtedly, by the time current Princeton students reach middle age, they will have witnessed a slew of societal structures sag — or collapse entirely — under the weight of extreme weather events and ever-worsening ecological decline.

janvier 2025

Human-caused climate change increased the likelihood and intensity of the hot, dry and windy conditions that fanned the flames of the recent devastating Southern California wildfires, a scientific study found. But the myriad of causes that go into the still smoldering fires are complex, so the level of global warming's fingerprints on weeks of burning appears relatively small compared to previous studies of killer heat waves, floods and droughts by the international team at World Weather Attribution. Tuesday's report, too rapid for peer-review yet, found global warming boosted the likelihood of high fire weather conditions in this month's fires by 35% and its intensity by 6%.

octobre 2024

Jean-Marc Jancovici, ingénieur spécialiste du changement climatique et président du think tank Shift Project, alerte sur des plans d'adaptation encore trop peu contraignants.

août 2024

High-level policy discussions have built momentum for “food system transformation” that would help farmers address the climate crisis.

juin 2024

Annually updated, IPCC AR6 consistent indicators of human-induced global warming, greenhouse gas emissions, and the remaining global carbon budget.
Abstract. Intergovernmental Panel on Climate Change (IPCC) assessments are the trusted source of scientific evidence for climate negotiations taking place under the United Nations Framework Convention on Climate Change (UNFCCC). Evidence-based decision-making needs to be informed by up-to-date and timely information on key indicators of the state of the climate system and of the human influence on the global climate system. However, successive IPCC reports are published at intervals of 5–10 years, creating potential for an information gap between report cycles. We follow methods as close as possible to those used in the IPCC Sixth Assessment Report (AR6) Working Group One (WGI) report. We compile monitoring datasets to produce estimates for key climate indicators related to forcing of the climate system: emissions of greenhouse gases and short-lived climate forcers, greenhouse gas concentrations, radiative forcing, the Earth's energy imbalance, surface temperature changes, warming attributed to human activit

avril 2024

Over the past 50 years, humans have extracted the Earth’s groundwater stocks at a steep rate, largely to fuel global agro-economic development. Given society’s growing reliance on groundwater, we explore ‘peak water limits’ to investigate whether, when and where humanity might reach peak groundwater extraction. Using an integrated global model of the coupled human–Earth system, we simulate groundwater withdrawals across 235 water basins under 900 future scenarios of global change over the twenty-first century. Here we find that global non-renewable groundwater withdrawals exhibit a distinct peak-and-decline signature, comparable to historical observations of other depletable resources (for example, minerals), in nearly all (98%) scenarios, peaking on average at 625 km3 yr−1 around mid-century, followed by a decline through 2100. The peak and decline occur in about one-third (82) of basins, including 21 that may have already peaked, exposing about half (44%) of the global population to groundwater stress. Most
Global projections of macroeconomic climate-change damages typically consider impacts from average annual and national temperatures over long time horizons1–6. Here we use recent empirical findings from more than 1,600 regions worldwide over the past 40 years to project sub-national damages from temperature and precipitation, including daily variability and extremes7,8. Using an empirical approach that provides a robust lower bound on the persistence of impacts on economic growth, we find that the world economy is committed to an income reduction of 19% within the next 26 years independent of future emission choices (relative to a baseline without climate impacts, likely range of 11–29% accounting for physical climate and empirical uncertainty). These damages already outweigh the mitigation costs required to limit global warming to 2 °C by sixfold over this near-term time frame and thereafter diverge strongly dependent on emission choices. Committed damages arise predominantly through changes in average tempe


propulsé par :