Fiches info

OA - Liste

choix : Audio – podcast Fiches Livres Sites Vidéos

Uniquement les fiches et Documents

Pour voir les références d’un(e) auteur(e), cliquez sur son nom. Pour revenir à la page, utilisez le bouton refresh ci-dessous.

Cela fonctionne également avec les mot-clés de chaque référence.

Résultats pour:
water

avril 2024

Over the past 50 years, humans have extracted the Earth’s groundwater stocks at a steep rate, largely to fuel global agro-economic development. Given society’s growing reliance on groundwater, we explore ‘peak water limits’ to investigate whether, when and where humanity might reach peak groundwater extraction. Using an integrated global model of the coupled human–Earth system, we simulate groundwater withdrawals across 235 water basins under 900 future scenarios of global change over the twenty-first century. Here we find that global non-renewable groundwater withdrawals exhibit a distinct peak-and-decline signature, comparable to historical observations of other depletable resources (for example, minerals), in nearly all (98%) scenarios, peaking on average at 625 km3 yr−1 around mid-century, followed by a decline through 2100. The peak and decline occur in about one-third (82) of basins, including 21 that may have already peaked, exposing about half (44%) of the global population to groundwater stress. Most

juillet 2023

Permafrost and glaciers in the high Arctic form an impermeable ‘cryospheric cap’ that traps a large reservoir of subsurface methane, preventing it from reaching the atmosphere. Cryospheric vulnerability to climate warming is making releases of this methane possible. On Svalbard, where air temperatures are rising more than two times faster than the average for the Arctic, glaciers are retreating and leaving behind exposed forefields that enable rapid methane escape. Here we document how methane-rich groundwater springs have formed in recently revealed forefields of 78 land-terminating glaciers across central Svalbard, bringing deep-seated methane gas to the surface. Waters collected from these springs during February–May of 2021 and 2022 are supersaturated with methane up to 600,000 times greater than atmospheric equilibration. Spatial sampling reveals a geological dependency on the extent of methane supersaturation, with isotopic evidence of a thermogenic source. We estimate annual methane emissions from prog

mai 2023

Terrestrial ecosystems have taken up about 32% of the total anthropogenic CO2 emissions in the past six decades1. Large uncertainties in terrestrial carbon–climate feedbacks, however, make it difficult to predict how the land carbon sink will respond to future climate change2. Interannual variations in the atmospheric CO2 growth rate (CGR) are dominated by land–atmosphere carbon fluxes in the tropics, providing an opportunity to explore land carbon–climate interactions3–6. It is thought that variations in CGR are largely controlled by temperature7–10 but there is also evidence for a tight coupling between water availability and CGR11. Here, we use a record of global atmospheric CO2, terrestrial water storage and precipitation data to investigate changes in the interannual relationship between tropical land climate conditions and CGR under a changing climate. We find that the interannual relationship between tropical water availability and CGR became increasingly negative during 1989–2018 compared to 1960–1989
Climate change and human activities increasingly threaten lakes that store 87% of Earth’s liquid surface fresh water. Yet, recent trends and drivers of lake volume change remain largely unknown globally. Here, we analyze the 1972 largest global lakes using three decades of satellite observations, climate data, and hydrologic models, finding statistically significant storage declines for 53% of these water bodies over the period 1992–2020. The net volume loss in natural lakes is largely attributable to climate warming, increasing evaporative demand, and human water consumption, whereas sedimentation dominates storage losses in reservoirs. We estimate that roughly one-quarter of the world’s population resides in a basin of a drying lake, underscoring the necessity of incorporating climate change and sedimentation impacts into sustainable water resources management.

décembre 2021

Satisfying the increased demand for food is placing pressure on the world’s water, land and soil resources. Agriculture has its part to play in alleviating these pressures and contributing positively to climate and development goals. Sustainable agricultural practices can lead to direct improvements in the state of land, soil and water, and generate ecosystem benefits as well as reduce emissions from land. Accomplishing all these requires accurate information and a major change in how we manage the resources. It also requires complementing efforts from outside the natural resources management domain to maximize synergies and manage trade-offs.

novembre 2021

As a leading climate scientist, Paola Arias doesn’t need to look far to see the world changing. Shifting rain patterns threaten water supplies in her home city of Medellín, Colombia, while rising sea levels endanger the country’s coastline. She isn’t confident that international leaders will slow global warming or that her own government can handle the expected fallout, such as mass migrations and civil unrest over rising inequality. With such an uncertain future, she thought hard several years ago about whether to have children.

juin 2021

When we hike through the woods, drive by a cornfield, or mow our lawns, we tend to focus on the plants: the blooming flowers, the tassel-topped stalks, and the green grass borders. But what about the dirt? It seems soil is one of the planet’s most underappreciated natural resources. Yet healthy soil is the foundation for agriculture; it also plays a vital role in protecting the air we breathe, the water we drink, the food we eat—and even our climate.

mai 2018

Freshwater availability is changing worldwide. Here we quantify 34 trends in terrestrial water storage observed by the Gravity Recovery and Climate Experiment (GRACE) satellites during 2002–2016 and categorize their drivers as natural interannual variability, unsustainable groundwater consumption, climate change or combinations thereof. Several of these trends had been lacking thorough investigation and attribution, including massive changes in northwestern China and the Okavango Delta. Others are consistent with climate model predictions. This observation-based assessment of how the world’s water landscape is responding to human impacts and climate variations provides a blueprint for evaluating and predicting emerging threats to water and food security. Analysis of 2002–2016 GRACE satellite observations of terrestrial water storage reveals substantial changes in freshwater resources globally, which are driven by natural and anthropogenic climate variability and human activities.

février 2018