– Outil de recherche de références documentaires –
Uniquement les fiches et Documents
Les champs auteur(e)s & mots-clés sont cliquables. Pour revenir à la page, utilisez le bouton refresh ci-dessous.
filtre:
petroleum
We propose a new paradigm, as toxicology currently lacks the proper perspective. From the 1950s to the 1970s, at least one-third of all toxicological testing in the United States, including for chemicals and drugs, was misleading scientists, and this worldwide issue persists today. Moreover, petroleum-based waste and heavy metals have been discovered in pesticide and plasticizer formulations. These contaminations have now reached all forms of life. Widespread exposure to chemical mixtures promotes health and environmental risks. We discovered that pesticides have never undergone long-term testing on mammals in their full commercial formulations by regulatory authorities or the pesticide industry; instead, only their declared active ingredients have been assessed, contrary to environmental law recommendations. The ingredients of these formulations are not fully disclosed, yet the formulations are in general at least 1000 times more toxic at low environmentally relevant doses than the active ingredients alone u
Over the past 50 years, humans have extracted the Earth’s groundwater stocks at a steep rate, largely to fuel global agro-economic development. Given society’s growing reliance on groundwater, we explore ‘peak water limits’ to investigate whether, when and where humanity might reach peak groundwater extraction. Using an integrated global model of the coupled human–Earth system, we simulate groundwater withdrawals across 235 water basins under 900 future scenarios of global change over the twenty-first century. Here we find that global non-renewable groundwater withdrawals exhibit a distinct peak-and-decline signature, comparable to historical observations of other depletable resources (for example, minerals), in nearly all (98%) scenarios, peaking on average at 625 km3 yr−1 around mid-century, followed by a decline through 2100. The peak and decline occur in about one-third (82) of basins, including 21 that may have already peaked, exposing about half (44%) of the global population to groundwater stress. Most
![]()

