Recherche : Articles Audio – podcast
Fiches
Livres
Sites
Vidéos
retour Veille
Uniquement les Articles
Pour voir les références d’un(e) auteur(e), cliquez sur son nom. Pour revenir à la page, utilisez le bouton refresh ci-dessous.
Cela fonctionne également avec les mot-clés de chaque référence.
filtre:
pattern
These powerful ‘rivers in the sky’ provide a huge share of annual precipitation in many regions, including California. They can also melt sea ice, with global climate implications.
Here, we show that the Last Glacial Maximum (LGM) provides a stronger constraint on equilibrium climate sensitivity (ECS), the global warming from increasing greenhouse gases, after accounting for temperature patterns. Feedbacks governing ECS depend on spatial patterns of surface temperature (“pattern effects”); hence, using the LGM to constrain future warming requires quantifying how temperature patterns produce different feedbacks during LGM cooling versus modern-day warming. Combining data assimilation reconstructions with atmospheric models, we show that the climate is more sensitive to LGM forcing because ice sheets amplify extratropical cooling where feedbacks are destabilizing. Accounting for LGM pattern effects yields a median modern-day ECS of 2.4°C, 66% range 1.7° to 3.5°C (1.4° to 5.0°C, 5 to 95%), from LGM evidence alone. Combining the LGM with other lines of evidence, the best estimate becomes 2.9°C, 66% range 2.4° to 3.5°C (2.1° to 4.1°C, 5 to 95%), substantially narrowing uncertainty compared t
An international team of scientists has warned against relying on nature providing straightforward 'early warning' indicators of a climate disaster, as new mathematical modeling shows new fascinating aspects of the complexity of the dynamics of climate. It suggests that the climate system could be more unpredictable than previously thought.