– Outil de recherche de références documentaires –
Uniquement les fiches et Documents
Les champs auteur(e)s & mots-clés sont cliquables. Pour revenir à la page, utilisez le bouton refresh ci-dessous.
filtre:
Systems
Launched at the COP30 Belém Climate Summit, the Global Status of Multi-Hazard Early Warning Systems 2025 report provides a snapshot of progress in the implementation of the UN's flagship Early Warnings for All (EW4All) initiative, which aims to protect every person on Earth with an early warning system by 2027. The report reveals measurable progress, with 119 countries, or 60% of all countries, now reporting the existence of a Multi-Hazard Early Warning System. This is a 113% increase over the past 10 years. However, coverage gaps persist, especially among small island developing States, as only 43% of them reported having systems in place.
We are hurtling toward climate chaos. The planet's vital signs are flashing red. The consequences of human-driven alterations of the climate are no longer future threats but are here now. This unfolding emergency stems from failed foresight, political inaction, unsustainable economic systems, and misinformation. Almost every corner of the biosphere is reeling from intensifying heat, storms, floods, droughts, or fires. The window to prevent the worst outcomes is rapidly closing. In early 2025, the World Meteorological Organization reported that 2024 was the hottest year on record (WMO 2025a). This was likely hotter than the peak of the last interglacial, roughly 125,000 years ago (Gulev et al. 2021, Kaufman and McKay 2022). Rising levels of greenhouse gases remain the driving force behind this escalation. These recent developments emphasize the extreme insufficiency of global efforts to reduce greenhouse gas emissions and mark the beginning of a grim new chapter for life on Earth.
Under current emission trajectories, temporarily overshooting the Paris global warming limit of 1.5 °C is a distinct possibility. Permanently exceeding this limit would substantially increase the probability of triggering climate tipping elements. Here, we investigate the tipping risks associated with several policy-relevant future emission scenarios, using a stylised Earth system model of four interconnected climate tipping elements.
Anthropogenic emissions drive global-scale warming yet the temperature increase relative to pre-industrial levels is uncertain. Using 300 years of ocean mixed-layer temperature records preserved in sclerosponge carbonate skeletons, we demonstrate that industrial-era warming began in the mid-1860s, more than 80 years earlier than instrumental sea surface temperature records. The Sr/Ca palaeothermometer was calibrated against ‘modern’ (post-1963) highly correlated (R2 = 0.91) instrumental records of global sea surface temperatures, with the pre-industrial defined by nearly constant (<±0.1 °C) temperatures from 1700 to the early 1860s. Increasing ocean and land-air temperatures overlap until the late twentieth century, when the land began warming at nearly twice the rate of the surface oceans. Hotter land temperatures, together with the earlier onset of industrial-era warming, indicate that global warming was already 1.7 ± 0.1 °C above pre-industrial levels by 2020. Our result is 0.5 °C higher than IPCC estim
Simultaneous harvest failures across major crop-producing regions are a threat to global food security. Concurrent weather extremes driven by a strongly meandering jet stream could trigger such events, but so far this has not been quantified. Specifically, the ability of state-of-the art crop and climate models to adequately reproduce such high impact events is a crucial component for estimating risks to global food security. Here we find an increased likelihood of concurrent low yields during summers featuring meandering jets in observations and models. While climate models accurately simulate atmospheric patterns, associated surface weather anomalies and negative effects on crop responses are mostly underestimated in bias-adjusted simulations. Given the identified model biases, future assessments of regional and concurrent crop losses from meandering jet states remain highly uncertain. Our results suggest that model-blind spots for such high-impact but deeply-uncertain hazards have to be anticipated and acc
Satisfying the increased demand for food is placing pressure on the world’s water, land and soil resources. Agriculture has its part to play in alleviating these pressures and contributing positively to climate and development goals. Sustainable agricultural practices can lead to direct improvements in the state of land, soil and water, and generate ecosystem benefits as well as reduce emissions from land. Accomplishing all these requires accurate information and a major change in how we manage the resources. It also requires complementing efforts from outside the natural resources management domain to maximize synergies and manage trade-offs.
Several kinds of pressure can lead to the emergence of infectious diseases. In the case of zoonoses emerging from livestock, one of the most significant changes that has taken place since the mid twentieth century is what has been termed the "livestock revolution", whereby the stock of food animals, …
![]()

