Sélection du moment:
An intense heat wave gripping South and South-East Asia since late March comes as no surprise to leading meteorologists who have been warning of steadily rising temperatures in the Indian Ocean.
Over the past 50 years, humans have extracted the Earth’s groundwater stocks at a steep rate, largely to fuel global agro-economic development. Given society’s growing reliance on groundwater, we explore ‘peak water limits’ to investigate whether, when and where humanity might reach peak groundwater extraction. Using an integrated global model of the coupled human–Earth system, we simulate groundwater withdrawals across 235 water basins under 900 future scenarios of global change over the twenty-first century. Here we find that global non-renewable groundwater withdrawals exhibit a distinct peak-and-decline signature, comparable to historical observations of other depletable resources (for example, minerals), in nearly all (98%) scenarios, peaking on average at 625 km3 yr−1 around mid-century, followed by a decline through 2100. The peak and decline occur in about one-third (82) of basins, including 21 that may have already peaked, exposing about half (44%) of the global population to groundwater stress. Most
In March and April 2023, some Earth scientists began to point out that average sea surface temperatures had surpassed the highest levels seen in a key data record maintained by NOAA. Months later, they remain at record levels, with global sea surface temperatures 0.99°C (1.78°F) above average in July. That was the fourth consecutive month they were at record levels.
La Niña is present.* Equatorial sea surface temperatures (SSTs) are below average across most of the Pacific Ocean. The tropical Pacific atmosphere is consistent with La Niña. La Niña is expected to continue into the winter, with equal chances of La Niña and ENSO-neutral during January-March 2023. In February-April 2023, there is a 71% chance of ENSO-neutral.*