références en Anglais

OA - Liste

Pour voir les références d’un(e) auteur(e), cliquez sur son nom. Pour revenir à la page, utilisez le bouton refresh ci-dessous.

Cela fonctionne également avec les mot-clés de chaque référence.

espace50x10

filtre:
atlantique

mai 2025

The Antarctic Circumpolar Current (ACC) is the world's strongest ocean current and plays a disproportionate role in the climate system due to its role as a conduit for major ocean basins. This current system is linked to the ocean's vertical overturning circulation, and is thus pivotal to the uptake of heat and CO2 in the ocean. The strength of the ACC has varied substantially across warm and cold climates in Earth's past, but the exact dynamical drivers of this change remain elusive. This is in part because ocean models have historically been unable to adequately resolve the small-scale processes that control current strength. Here, we assess a global ocean model simulation which resolves such processes to diagnose the impact of changing thermal, haline and wind conditions on the strength of the ACC. Our results show that, by 2050, the strength of the ACC declines by ∼20% for a high-emissions scenario. This decline is driven by meltwater from ice shelves around Antarctica, which is exported to lower latit

mars 2025

The Atlantic Meridional Overturning Circulation (AMOC), vital for northwards heat transport in the Atlantic Ocean, is projected to weaken owing to global warming1, with significant global climate impacts2. However, the extent of AMOC weakening is uncertain with wide variation a …

février 2025

Some scientists fear the risk of a collapse to warm Atlantic currents has not been taken seriously.

janvier 2025

A new study suggests that the Gulf Stream was stronger during the last ice age due to more powerful winds, indicating that future changes in wind patterns could weaken the Gulf Stream, affecting European climate and North American sea levels. This research enhances our understanding of the Atlantic Meridional Overturning Circulation (AMOC) and its vulnerability to climate change.

octobre 2024

AMOC collapse would bring severe global climate repercussions, with Europe bearing the brunt of the consequences.

août 2024

There is increasing concern that the Atlantic Meridional Overturning Circulation (AMOC) may collapse this century with a disrupting societal impact on large parts of the world. Preliminary estimates of the probability of such an AMOC collapse have so far been based on conceptual models and statistical analyses of proxy data. Here, we provide observationally based estimates of such probabilities from reanalysis data. We first identify optimal observation regions of an AMOC collapse from a recent global climate model simulation. Salinity data near the southern boundary of the Atlantic turn out to be optimal to provide estimates of the time of the AMOC collapse in this model. Based on the reanalysis products, we next determine probability density functions of the AMOC collapse time. The collapse time is estimated between 2037-2064 (10-90% CI) with a mean of 2050 and the probability of an AMOC collapse before the year 2050 is estimated to be 59±17%.

février 2024

A crucial system of ocean currents may already be on course to collapse, according to a new report, with alarming implications for sea level rise and global weather — leading temperatures to plunge dramatically in some regions and rise in others. Using exceptionally complex and expensive computing systems, scientists found a new way to detect an early warning signal for the collapse of these currents, according to the study published Friday in the journal Science Advances. And as the planet warms, there are already indications it is heading in this direction.

juillet 2022

Howard Dryden reached out to me to express his dismay at having been misquoted by the Sunday Post, which should have reported a "90% reduction in marine plankton in the Equatorial Atlantic, not the whole Atlantic." "The issue is that the findings are accurate and what is stated in the report are true. We are the first to identify the huge concentration of PCC, and the drop in Plankton. We are working with some academic institutes to prepare a formal peer reviewed report, but this takes time and I was so depressed by the results and the fact that we did not see a single whale or big fish, except for a few flying fish for 20 days at sea. This was the same for all the vessels and anyone now sailing in the equatorial Atlantic," Dryden told Ars. "The results should of course be verified independently, and it should be opened up to proper debate. This may be one of the few chances we have and others to pick up the issues and deal with them. If we fail to act and eliminate PCC pollution, microplastics and for e

août 2021

The Atlantic Meridional Overturning Circulation (AMOC), a major ocean current system transporting warm surface waters toward the northern Atlantic, has been suggested to exhibit two distinct modes of operation. A collapse from the currently attained strong to the weak mode would have severe impacts on the global climate system and further multi-stable Earth system components. Observations and recently suggested fingerprints of AMOC variability indicate a gradual weakening during the last decades, but estimates of the critical transition point remain uncertain.
The Atlantic Ocean's current system, an engine of the Northern Hemsiphere's climate, could be weakening to such an extent that it could soon bring big changes to the world's weather, a scientific study said on Thursday.
If Earth had a pulse, it might be The Atlantic Meridional Overturning Circulation (AMOC) – a swirl of ocean currents that carries tropical heat north towards polar waters. Over the past century this global heartbeat has eased, slowing to a speed not seen in more than a millennium. New research based on a range of indices has now bolstered views that the weakening isn't a trivial one, and critical transition is imminent.
Climate scientists have detected warning signs of the collapse of the Gulf Stream, one of the planet’s main potential tipping points. The research found “an almost complete loss of stability over the last century” of the currents that researchers call the Atlantic Meridional Overturning Circulation (AMOC). The currents are already at their slowest point in at least 1,600 years, but the new analysis shows they may be nearing a shutdown.