Pour voir les références d’un(e) auteur(e), cliquez sur son nom. Pour revenir à la page, utilisez le bouton refresh ci-dessous.
Cela fonctionne également avec les mot-clés de chaque référence.
filtre:
earth
Tipping elements within the Earth system are increasingly well understood. Scientists have identified more than 25 parts of the Earth’s climate system that are likely to have “tipping points” – thresholds where a small additional change in global warming will cause them to irreversibly shift into a new state. The “tipping” of these systems – which include the Atlantic Meridional Overturning Circulation (AMOC), the Amazon rainforest and the Greenland ice sheet – would have profound consequences for both the biosphere and people. More recent research suggests that triggering one tipping element could cause subsequent changes in other tipping elements, potentially leading to a “tipping cascade”. For example, a collapsed AMOC could lead to dieback of the Amazon rainforest and hasten the melt of the Greenland ice sheet.
💡 Is our obsession with economic growth leading us to collapse? Economist and research Gaya Herrington joins us to discuss why GDP is a flawed metric, how degrowth can lead to a thriving well-being economy, and why businesses must prioritize resilience over efficiency. Tune in for a critical conversation on reshaping our economic future.
2024 was the warmest year on Earth since direct observations began, and recent warming appears to be moving faster than expected.
An international group of scientists, led by King's College London, has revealed how continued global warming will lead to more parts of the planet becoming too hot for the human body over the coming decades. the amount of landmass on our planet that would be too hot for even healthy young humans (18 to 60-year-olds) to keep a safe core body temperature will approximately triple (to 6%)—an area almost the size of the US—if global warming reaches 2°C above the preindustrial average.
Climate change is causing unprecedented drying across the Earth — and five billion people could be affected by 2100, a new UN report has warned.
Olivia Ferrari is a New York City-based freelance journalist with a background in research and science communication. Olivia has lived and worked in the U.K., Costa Rica, Panama and Colombia. Her writing focuses on wildlife, environmental justice, climate change, and social science.
Global warming is moving faster than the best models can keep a handle on.
Experts warn that mirror bacteria, constructed from mirror images of molecules found in nature, could put humans, animals and plants at risk of lethal infections
Human pressures have pushed the Earth system deep into the Anthropocene, threatening its stability, resilience and functioning. The Planetary Boundaries (PB) framework emerged against these threats, setting safe levels to the biophysical systems and processes that, with high likelihood, ensure life-supporting Holocene-like conditions. In this Review, we synthesize PB advancements, detailing its emergence and mainstreaming across scientific disciplines and society. The nine PBs capture the key functions regulating the Earth system. The safe operating space has been transgressed for six of these. PB science is essential to prevent further Earth system risks and has sparked new research on the precision of safe boundaries. Human development within planetary boundaries defines sustainable development, informing advances in social sciences. Each PB translates to a finite budget that the world must operate within, requiring strengthened global governance. The PB framework has been adopted by businesses and informed
Harry is a U.K.-based senior staff writer at Live Science. He studied marine biology at the University of Exeter before training to become a journalist. He covers a wide range of topics including space exploration, planetary science, space weather, climate change, animal behavior, evolution and paleontology. His feature on the upcoming solar maximum was shortlisted in the "top scoop" category at the National Council for the Training of Journalists (NCTJ) Awards for Excellence in 2023.
Record emissions, temperatures and population mean more scientists are looking into possibility of societal collapse, report says
We are on the brink of an irreversible climate disaster. This is a global emergency beyond any doubt. Much of the very fabric of life on Earth is imperiled. We are stepping into a critical and unpredictable new phase of the climate crisis. For many years, scientists, including a group of more than 15,000, have sounded the alarm about the impending dangers of climate change driven by increasing greenhouse gas emissions and ecosystem change (Ripple et al. 2020).
An extensive new multi-proxy database of paleo-temperature time series (Temperature 12k) enables a more robust analysis of global mean surface temperature (GMST) and associated uncertainties than was previously available. We applied five different statistical methods to reconstruct the GMST of the past 12,000 years (Holocene). Each method used different approaches to averaging the globally distributed time series and to characterizing various sources of uncertainty, including proxy temperature, chronology and methodological choices. The results were aggregated to generate a multi-method ensemble of plausible GMST and latitudinal-zone temperature reconstructions with a realistic range of uncertainties. The warmest 200-year-long interval took place around 6500 years ago when GMST was 0.7 °C (0.3, 1.8) warmer than the 19th Century (median, 5th, 95th percentiles). Following the Holocene global thermal maximum, GMST cooled at an average rate −0.08 °C per 1000 years (−0.24, −0.05). The multi-method ensembles and th
Under current emission trajectories, temporarily overshooting the Paris global warming limit of 1.5 °C is a distinct possibility. Permanently exceeding this limit would substantially increase the probability of triggering climate tipping elements. Here, we investigate the tipping risks associated with several policy-relevant future emission scenarios, using a stylised Earth system model of four interconnected climate tipping elements.
A carbon bomb is any fossil fuel extraction project that will generate more than one gigatonne of carbon dioxide (1GtCO2) over its remaining life.
Simultaneous harvest failures across major crop-producing regions are a threat to global food security. Concurrent weather extremes driven by a strongly meandering jet stream could trigger such events, but so far this has not been quantified. Specifically, the ability of state-of-the art crop and climate models to adequately reproduce such high impact events is a crucial component for estimating risks to global food security. Here we find an increased likelihood of concurrent low yields during summers featuring meandering jets in observations and models. While climate models accurately simulate atmospheric patterns, associated surface weather anomalies and negative effects on crop responses are mostly underestimated in bias-adjusted simulations. Given the identified model biases, future assessments of regional and concurrent crop losses from meandering jet states remain highly uncertain. Our results suggest that model-blind spots for such high-impact but deeply-uncertain hazards have to be anticipated and acc
Evidence shows a continuing increase in the frequency and severity of global heatwaves1,2, raising concerns about the future impacts of climate change and the associated socioeconomic costs3,4. Here we develop a disaster footprint analytical framework by integrating climate, epidemiological and hybrid input–output and computable general equilibrium global trade models to estimate the midcentury socioeconomic impacts of heat stress. We consider health costs related to heat exposure, the value of heat-induced labour productivity loss and indirect losses due to economic disruptions cascading through supply chains. Here we show that the global annual incremental gross domestic product loss increases exponentially from 0.03 ± 0.01 (SSP 245)–0.05 ± 0.03 (SSP 585) percentage points during 2030–2040 to 0.05 ± 0.01–0.15 ± 0.04 percentage points during 2050–2060. By 2060, the expected global economic losses reach a total of 0.6–4.6% with losses attributed to health loss (37–45%), labour productivity loss (18–37%) and i
A UN meeting this week considered a motion on a suite of technologies known as ‘solar radiation modification’, but no consensus could be reached on the controversial topic.
The planetary boundaries concept presents a set of nine planetary boundaries within which humanity can continue to develop and thrive for generations to come
Anthropogenic emissions drive global-scale warming yet the temperature increase relative to pre-industrial levels is uncertain. Using 300 years of ocean mixed-layer temperature records preserved in sclerosponge carbonate skeletons, we demonstrate that industrial-era warming began in the mid-1860s, more than 80 years earlier than instrumental sea surface temperature records. The Sr/Ca palaeothermometer was calibrated against ‘modern’ (post-1963) highly correlated (R2 = 0.91) instrumental records of global sea surface temperatures, with the pre-industrial defined by nearly constant (<±0.1 °C) temperatures from 1700 to the early 1860s. Increasing ocean and land-air temperatures overlap until the late twentieth century, when the land began warming at nearly twice the rate of the surface oceans. Hotter land temperatures, together with the earlier onset of industrial-era warming, indicate that global warming was already 1.7 ± 0.1 °C above pre-industrial levels by 2020. Our result is 0.5 °C higher than IPCC estim