Les champs auteur(e)s & mots-clés sont cliquables. Pour revenir à la page, utilisez le bouton refresh ci-dessous.
filtre:
ocean
Almost 100 countries reject draft treaty as ‘unambitious’ and ‘inadequate’
As corporate interest in ocean carbon removal grows, researchers from Woods Hole Oceanographic Institution are testing the safety and effectiveness of one such technique in the Gulf of Maine.
New research indicates that more than a fifth of the global ocean has darkened over the past two decades, with the depths that sunlight can penetrate significantly retreating. This "reduces the amount of ocean available for animals that rely on the Sun and the Moon for their survival and reproduction," said study author Thomas Davies, associate professor of marine conservation at the University of Plymouth, in a statement about the work.
blue whale vocalizations dropped by almost 40 percent, according to the study, with populations of krill and anchovy collapsing. "When you really break it down, it’s like trying to sing while you're starving," Ryan explained. "They were spending all their time just trying to find food."
For decades, the surface of the polar Southern Ocean (south of 50°S) has been freshening—an expected response to a warming climate. This freshening enhanced upper-ocean stratification, reducing the upward transport of subsurface heat and possibly contributing to sea ice expansion. It also limited the formation of open-ocean polynyas. Using satellite observations, we reveal a marked increase in surface salinity across the circumpolar Southern Ocean since 2015. This shift has weakened upper-ocean stratification, coinciding with a dramatic decline in Antarctic sea ice coverage. Additionally, rising salinity facilitated the reemergence of the Maud Rise polynya in the Weddell Sea, a phenomenon last observed in the mid-1970s.
The startup Gigablue announced with fanfare this year that it reached a historic milestone: selling 200,000 carbon credits to fund what it describes as a groundbreaking technology in the fight against climate change . But outside scientists frustrated by the lack of information released by the company say serious questions remain about whether Gigablue’s technology works as the company describes. Their questions showcase tensions in an industry built on little regulation and big promises — and a tantalizing chance to profit.
Dozens of companies and academic groups are pitching the same theory: that sinking rocks, nutrients, crop waste or seaweed in the ocean could lock away climate-warming carbon dioxide for centuries or more. Nearly 50 field trials have taken place in the past four years, with startups raising hundreds of millions in early funds. But the field remains rife with debate over the consequences for the oceans if the strategies are deployed at large scale, and over the exact benefits for the climate. Critics say the efforts are moving too quickly and with too few guardrails.
The Kenyan marine ecologist David Obura is chair of a panel of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the world’s leading natural scientists. For many decades, his speciality has been corals, but he has warned that the next generation may not see their glory because so many reefs are now “flickering out across the world”.
Despite working on polar science for the British Antarctic Survey for 20 years, Louise Sime finds the magnitude of potential sea-level rise hard to comprehend
Stefan Rahmstorf, Professor of Physics os the Ocean at the University of Potsdam since 2000, presents a colloquium on the risks associated with the destabilization of the Atlantic Meridional Overturning Circulation (AMOC) and its potential consequences for the global climate.
Recent simulations using the Community Earth System Model (CESM) indicate that a tipping event of the Atlantic Meridional Overturning Circulation (AMOC) would cause Europe to cool by several degrees. This AMOC tipping event was found under constant pre-industrial greenhouse gas forcing, while global warming likely limits this AMOC-induced cooling response. Here, we quantify the European temperature responses under different AMOC regimes and climate change scenarios. A strongly reduced AMOC state and intermediate global warming (C, Representative Concentration Pathway 4.5) has a profound cooling effect on Northwestern Europe with more intense cold extremes. The largest temperature responses are found during the winter months and these responses are strongly influenced by the North Atlantic sea-ice extent. Enhanced North Atlantic storm track activity under an AMOC collapse results in substantially larger day-to-day temperature fluctuations. We conclude that the (far) future European temperatures are dependent o
Ocean acidification has already crossed a crucial threshold for planetary health, scientists say in unexpected finding
There’s frustration among researchers that falling pH levels in seas around the globe are not being taken seriously enough, and that until the buildup of CO2 is addressed, the consequences for marine life will be devastating
Antarctica's remote and mysterious current has a profound influence on the climate, food systems and Antarctic ecosystems. Can we stop it weakening by 2050?
The Antarctic Circumpolar Current (ACC) is the world's strongest ocean current and plays a disproportionate role in the climate system due to its role as a conduit for major ocean basins. This current system is linked to the ocean's vertical overturning circulation, and is thus pivotal to the uptake of heat and CO2 in the ocean. The strength of the ACC has varied substantially across warm and cold climates in Earth's past, but the exact dynamical drivers of this change remain elusive. This is in part because ocean models have historically been unable to adequately resolve the small-scale processes that control current strength. Here, we assess a global ocean model simulation which resolves such processes to diagnose the impact of changing thermal, haline and wind conditions on the strength of the ACC. Our results show that, by 2050, the strength of the ACC declines by ∼20% for a high-emissions scenario. This decline is driven by meltwater from ice shelves around Antarctica, which is exported to lower latit
EN
Atlantic ocean currents are weakening — and it could make the climate in some regions unrecognizable
(24/04) - Sascha PareSascha is a U.K.-based staff writer at Live Science. She holds a bachelor’s degree in biology from the University of Southampton in England and a master’s degree in science communication from Imperial College London. Her work has appeared in The Guardian and the health website Zoe. Besides writing, she enjoys playing tennis, bread-making and browsing second-hand shops for hidden gems.
For around 2,000 years, global sea levels varied little. That changed in the 20th century. They started rising and have not stopped since — and the pace is accelerating. Scientists are scrambling to understand what this means for the future just as President Trump strips back agencies tasked with monitoring the oceans.
The ocean ecosystem is a vital component of the global carbon cycle, storing enough carbon to keep atmospheric CO2 considerably lower than it would otherwise be. However, this conception is based on simple models, neglecting the coupled land-ocean feedback. Using an interactive Earth system model, we show that the role ocean biology plays in controlling atmospheric CO2 is more complex than previously thought. Atmospheric CO2 in a new equilibrium state after the biological pump is shut down increases by more than 50% (163 ppm), lower than expected as approximately half the carbon lost from the ocean is adsorbed by the land. The abiotic ocean is less capable of taking up anthropogenic carbon due to the warmer climate, an absent biological surface pCO2 deficit and a higher Revelle factor. Prioritizing research on and preserving marine ecosystem functioning would be crucial to mitigate climate change and the risks associated with it.
Have you ever thought about what would happen if all life in the ocean disappeared? A recent study explores this extreme scenario to understand how ocean biology shapes the past, present, and future climate. The ocean plays a critical role in regulating Earth's climate. It is a massive carbon store that absorbs about 25% of human-caused emissions and thus helps maintain a relatively low CO2 level in the atmosphere. But what would happen if all marine life—from the tiniest plankton to the largest whales—disappeared? A recent study delves into this extreme scenario to uncover the crucial role that ocean biology plays in mitigating climate change.
If the global consumption of fossil fuels continues to grow at its present rate, atmospheric CO2 content will double in about 50 years. Climatic models suggest that the resultant greenhouse-warming effect will be greatly magnified in high latitudes. The computed temperature rise at lat 80° S could start rapid deglaciation of West Antarctica, leading to a 5 m rise in sea level.