Veille 2.1

OA - Liste OA - Liste

Sélection du moment:


Langue(3/3)
Médias(8/8)
Résultats pour:
university

avril 2024

Global projections of macroeconomic climate-change damages typically consider impacts from average annual and national temperatures over long time horizons1–6. Here we use recent empirical findings from more than 1,600 regions worldwide over the past 40 years to project sub-national damages from temperature and precipitation, including daily variability and extremes7,8. Using an empirical approach that provides a robust lower bound on the persistence of impacts on economic growth, we find that the world economy is committed to an income reduction of 19% within the next 26 years independent of future emission choices (relative to a baseline without climate impacts, likely range of 11–29% accounting for physical climate and empirical uncertainty). These damages already outweigh the mitigation costs required to limit global warming to 2 °C by sixfold over this near-term time frame and thereafter diverge strongly dependent on emission choices. Committed damages arise predominantly through changes in average tempe

mars 2024

Evidence shows a continuing increase in the frequency and severity of global heatwaves1,2, raising concerns about the future impacts of climate change and the associated socioeconomic costs3,4. Here we develop a disaster footprint analytical framework by integrating climate, epidemiological and hybrid input–output and computable general equilibrium global trade models to estimate the midcentury socioeconomic impacts of heat stress. We consider health costs related to heat exposure, the value of heat-induced labour productivity loss and indirect losses due to economic disruptions cascading through supply chains. Here we show that the global annual incremental gross domestic product loss increases exponentially from 0.03 ± 0.01 (SSP 245)–0.05 ± 0.03 (SSP 585) percentage points during 2030–2040 to 0.05 ± 0.01–0.15 ± 0.04 percentage points during 2050–2060. By 2060, the expected global economic losses reach a total of 0.6–4.6% with losses attributed to health loss (37–45%), labour productivity loss (18–37%) and i
A new study led by researchers at the University of Oxford has used the fossil record to better understand what factors make animals more vulnerable to extinction from climate change. The results, published today in the journal Science, could help to identify species most at risk today from human-driven climate change.

février 2024

Le débat sur les nouveaux OGM est biaisé par les lobbies qui défendent toute une série d’intérêts économiques. A la faveur de sa présidence européenne, la Belgique doit se positionner dans ce dossier en facilitant l’élaboration d’une politique européenne qui donne la priorité à l’équité, à l’autonomie des agriculteur.e.s, à la santé publique et à l’environnement.
Marine heat waves will become a regular occurrence in the Arctic in the near future and are a product of higher anthropogenic greenhouse-gas emissions, according to a study just released by Dr. Armineh Barkhordarian from Universität Hamburg's Cluster of Excellence for climate research CLICCS. Since 2007, conditions in the Arctic have shifted, as confirmed by data recently published in the journal Communications Earth & Environment. Between 2007 and 2021, the marginal zones of the Arctic Ocean experienced 11 marine heat waves, producing an average temperature rise of 2.2 degrees Celsius above seasonal norm and lasting an average of 37 days. Since 2015, there have been Arctic marine heat waves every year.
Anthropogenic emissions drive global-scale warming yet the temperature increase relative to pre-industrial levels is uncertain. Using 300 years of ocean mixed-layer temperature records preserved in sclerosponge carbonate skeletons, we demonstrate that industrial-era warming began in the mid-1860s, more than 80 years earlier than instrumental sea surface temperature records. The Sr/Ca palaeothermometer was calibrated against ‘modern’ (post-1963) highly correlated (R2 = 0.91) instrumental records of global sea surface temperatures, with the pre-industrial defined by nearly constant (<±0.1 °C) temperatures from 1700 to the early 1860s. Increasing ocean and land-air temperatures overlap until the late twentieth century, when the land began warming at nearly twice the rate of the surface oceans. Hotter land temperatures, together with the earlier onset of industrial-era warming, indicate that global warming was already 1.7 ± 0.1 °C above pre-industrial levels by 2020. Our result is 0.5 °C higher than IPCC estim

décembre 2023

Societies and political structures, like the humans they serve, appear to become more fragile as they age, according to an analysis of hundreds of pre-modern societies.

juillet 2023

As the Arctic warms, shrinking glaciers are exposing bubbling groundwater springs which could provide an underestimated source of the potent greenhouse gas methane, finds new research published in Nature Geoscience. The study, led by researchers from the University of Cambridge and the University Center in Svalbard, Norway, identified large stocks of methane gas leaking from groundwater springs unveiled by melting glaciers.
Permafrost and glaciers in the high Arctic form an impermeable ‘cryospheric cap’ that traps a large reservoir of subsurface methane, preventing it from reaching the atmosphere. Cryospheric vulnerability to climate warming is making releases of this methane possible. On Svalbard, where air temperatures are rising more than two times faster than the average for the Arctic, glaciers are retreating and leaving behind exposed forefields that enable rapid methane escape. Here we document how methane-rich groundwater springs have formed in recently revealed forefields of 78 land-terminating glaciers across central Svalbard, bringing deep-seated methane gas to the surface. Waters collected from these springs during February–May of 2021 and 2022 are supersaturated with methane up to 600,000 times greater than atmospheric equilibration. Spatial sampling reveals a geological dependency on the extent of methane supersaturation, with isotopic evidence of a thermogenic source. We estimate annual methane emissions from prog
A team of Penn State researchers investigated how seeing frightening news about climate change day after day may shape the way people feel about the phenomenon and how willing they are to take action to address it. They published their findings in the journal Climatic Change. 

mai 2023

Terrestrial ecosystems have taken up about 32% of the total anthropogenic CO2 emissions in the past six decades1. Large uncertainties in terrestrial carbon–climate feedbacks, however, make it difficult to predict how the land carbon sink will respond to future climate change2. Interannual variations in the atmospheric CO2 growth rate (CGR) are dominated by land–atmosphere carbon fluxes in the tropics, providing an opportunity to explore land carbon–climate interactions3–6. It is thought that variations in CGR are largely controlled by temperature7–10 but there is also evidence for a tight coupling between water availability and CGR11. Here, we use a record of global atmospheric CO2, terrestrial water storage and precipitation data to investigate changes in the interannual relationship between tropical land climate conditions and CGR under a changing climate. We find that the interannual relationship between tropical water availability and CGR became increasingly negative during 1989–2018 compared to 1960–1989
Flash drought, characterized by unusually rapid drying, can have substantial impact on many socioeconomic sectors, particularly agriculture. However, potential changes to flash drought risk in a warming climate remain unknown. In this study, projected changes in flash drought frequency and cropland risk from flash drought are quantified using global climate model simulations. We find that flash drought occurrence is expected to increase globally among all scenarios, with the sharpest increases seen in scenarios with higher radiative forcing and greater fossil fuel usage. Flash drought risk over cropland is expected to increase globally, with the largest increases projected across North America (change in annual risk from 32% in 2015 to 49% in 2100) and Europe (32% to 53%) in the most extreme emissions scenario. Following low-end and medium scenarios compared to high-end scenarios indicates a notable reduction in annual flash drought risk over cropland. Flash droughts are projected to become more frequent unde
Current climate policies will leave more than a fifth of humanity exposed to dangerously hot temperatures by 2100, new research suggests. The paper, published in the journal Nature Sustainability, is entitled "Quantifying the Human Cost of Global Warming."

mars 2023

Microplastic pollution reduces energy production in a microscopic creature found in freshwater worldwide, new research shows. Paramecium bursaria contain algae that live inside their cells and provide energy by photosynthesis. The results of a NEW STUDY showed a 50% decline in net photosynthesis—a major impact on the algae's ability to produce energy and release oxygen
Global CO2 emissions for 2022 increased by 1.5% relative to 2021 (+7.9% and +2.0% relative to 2020 and 2019, respectively), reaching 36.1 GtCO2. These 2022 emissions consumed 13%–36% of the remaining carbon budget to limit warming to 1.5 °C, suggesting permissible emissions could be depleted within 2–7 years (67% likelihood).