Pour voir les références d’un(e) auteur(e), cliquez sur son nom. Pour revenir à la page, utilisez le bouton refresh ci-dessous.
Cela fonctionne également avec les mot-clés de chaque référence.
Résultats pour:
Science
Experts warn that mirror bacteria, constructed from mirror images of molecules found in nature, could put humans, animals and plants at risk of lethal infections
All known life is homochiral. DNA and RNA are made from “right-handed” nucleotides, and proteins are made from “left-handed” amino acids. Driven by curiosity and plausible applications, some researchers had begun work toward creating lifeforms composed entirely of mirror-image biological molecules. Such mirror organisms would constitute a radical departure from known life, and their creation warrants careful consideration. The capability to create mirror life is likely at least a decade away and would require large investments and major technical advances; we thus have an opportunity to consider and preempt risks before they are realized. Here, we draw on an in-depth analysis of current technical barriers, how they might be eroded by technological progress, and what we deem to be unprecedented and largely overlooked risks (1). We call for broader discussion among the global research community, policy-makers, research funders, industry, civil society, and the public to chart an appropriate path forward.
We are used to thinking about natural disasters as events confined in time and space: the direct impact in a certain location of an earthquake happens over minutes, a hurricane over hours. While they might be confined in geography, longitudinal studies can help us understand the full range of effects and what extra efforts might be needed to rebuild.
The Atlantic Ocean's most vital ocean current is showing troubling signs of reaching a disastrous tipping point. Oceanographer Stefan Rahmstorf tells Live Science what the impacts could be.
Harry is a U.K.-based senior staff writer at Live Science. He studied marine biology at the University of Exeter before training to become a journalist. He covers a wide range of topics including space exploration, planetary science, space weather, climate change, animal behavior, evolution and paleontology. His feature on the upcoming solar maximum was shortlisted in the "top scoop" category at the National Council for the Training of Journalists (NCTJ) Awards for Excellence in 2023.
Under current emission trajectories, temporarily overshooting the Paris global warming limit of 1.5 °C is a distinct possibility. Permanently exceeding this limit would substantially increase the probability of triggering climate tipping elements. Here, we investigate the tipping risks associated with several policy-relevant future emission scenarios, using a stylised Earth system model of four interconnected climate tipping elements.
New research shows the company’s scientists were as “skillful” as independent experts in predicting how the burning of fossil fuels would warm the planet and bring about climate change.
Here, we show that the Last Glacial Maximum (LGM) provides a stronger constraint on equilibrium climate sensitivity (ECS), the global warming from increasing greenhouse gases, after accounting for temperature patterns. Feedbacks governing ECS depend on spatial patterns of surface temperature (“pattern effects”); hence, using the LGM to constrain future warming requires quantifying how temperature patterns produce different feedbacks during LGM cooling versus modern-day warming. Combining data assimilation reconstructions with atmospheric models, we show that the climate is more sensitive to LGM forcing because ice sheets amplify extratropical cooling where feedbacks are destabilizing. Accounting for LGM pattern effects yields a median modern-day ECS of 2.4°C, 66% range 1.7° to 3.5°C (1.4° to 5.0°C, 5 to 95%), from LGM evidence alone. Combining the LGM with other lines of evidence, the best estimate becomes 2.9°C, 66% range 2.4° to 3.5°C (2.1° to 4.1°C, 5 to 95%), substantially narrowing uncertainty compared t
Knowing how to appeal to apocalyptic fear, political fear, and private fear will help a leader name reality in a credible manner and assess which fear to prioritize at a given time.
The rapid growth of clean energy technologies is driving a rising demand for critical minerals. In 2022 at the 15th Conference of the Parties to the Convention on Biological Diversity (COP15), seven major economies formed an alliance to enhance the sustainability of mining these essential decarbonization minerals. However, there is a scarcity of studies assessing the threat of mining to global biodiversity. By integrating a global mining dataset with great ape density distribution, we estimated the number of African great apes that spatially coincided with industrial mining projects. We show that up to one-third of Africa’s great ape population faces mining-related risks. In West Africa in particular, numerous mining areas overlap with fragmented ape habitats, often in high-density ape regions. For 97% of mining areas, no ape survey data are available, underscoring the importance of increased accessibility to environmental data within the mining sector to facilitate research into the complex interactions betw
Figure TS.15 | Contribution to (a) effective radiative forcing (ERF) and (b) global surface temperature change from component emissions for1750–2019based on Coupled Model Intercomparison Project Phase 6 (CMIP6) models and (c) net aerosol ERF for 1750–2014 from different lines of evidence.
Evidence shows a continuing increase in the frequency and severity of global heatwaves1,2, raising concerns about the future impacts of climate change and the associated socioeconomic costs3,4. Here we develop a disaster footprint analytical framework by integrating climate, epidemiological and hybrid input–output and computable general equilibrium global trade models to estimate the midcentury socioeconomic impacts of heat stress. We consider health costs related to heat exposure, the value of heat-induced labour productivity loss and indirect losses due to economic disruptions cascading through supply chains. Here we show that the global annual incremental gross domestic product loss increases exponentially from 0.03 ± 0.01 (SSP 245)–0.05 ± 0.03 (SSP 585) percentage points during 2030–2040 to 0.05 ± 0.01–0.15 ± 0.04 percentage points during 2050–2060. By 2060, the expected global economic losses reach a total of 0.6–4.6% with losses attributed to health loss (37–45%), labour productivity loss (18–37%) and i
The Amazon rainforest is facing a barrage of pressures that might tip it into large-scale ecosystem collapse as soon as 2050, according to new research Wednesday warning of dire consequences for the region and the world. The Amazon, which holds more than 10 percent of the world's biodiversity, helps stabilize the global climate by storing the equivalent of around two decades of emissions of planet-warming carbon dioxide.
Anthropogenic emissions drive global-scale warming yet the temperature increase relative to pre-industrial levels is uncertain. Using 300 years of ocean mixed-layer temperature records preserved in sclerosponge carbonate skeletons, we demonstrate that industrial-era warming began in the mid-1860s, more than 80 years earlier than instrumental sea surface temperature records. The Sr/Ca palaeothermometer was calibrated against ‘modern’ (post-1963) highly correlated (R2 = 0.91) instrumental records of global sea surface temperatures, with the pre-industrial defined by nearly constant (<±0.1 °C) temperatures from 1700 to the early 1860s. Increasing ocean and land-air temperatures overlap until the late twentieth century, when the land began warming at nearly twice the rate of the surface oceans. Hotter land temperatures, together with the earlier onset of industrial-era warming, indicate that global warming was already 1.7 ± 0.1 °C above pre-industrial levels by 2020. Our result is 0.5 °C higher than IPCC estim
Exclusive: UAE’s Sultan Al Jaber says phase-out of coal, oil and gas would take world ‘back into caves’
In 1987, the Montreal Protocol established a ban on substances responsible for destroying the ozone layer, which is essential for protection against the sun’s rays.
Policy-makers seeking to limit the impact of coal electricity-generating units (EGUs, also known as power plants) on air quality and climate justify regulations by quantifying the health burden attributable to exposure from these sources. We defined “coal PM2.5” as fine particulate matter associated with coal EGU sulfur dioxide emissions and estimated annual exposure to coal PM2.5 from 480 EGUs in the US. We estimated the number of deaths attributable to coal PM2.5 from 1999 to 2020 using individual-level Medicare death records representing 650 million person-years. Exposure to coal PM2.5 was associated with 2.1 times greater mortality risk than exposure to PM2.5 from all sources. A total of 460,000 deaths were attributable to coal PM2.5, representing 25% of all PM2.5-related Medicare deaths before 2009 and 7% after 2012. Here, we quantify and visualize the contribution of individual EGUs to mortality.
The fate, effects, and treatment of per- and polyfluoroalkyl substances (PFAS), an anthropogenic class of chemicals used in industrial and commercial production, are topics of great interest in recent research and news cycles. This interest stems from the ubiquity of PFAS in the global environment as well as their significant toxicological effects in humans and wildlife. Research on toxicity, sequestration, removal, and degradation of PFAS has grown rapidly, leading to a flood of valuable knowledge that can get swamped out in the perpetual rise in the number of publications. Selected papers from the Journal of Hazardous Materials between January 2018 and May 2022 on the toxicity, sequestration, and degradation of PFAS are reviewed in this article and made available as open-access publications for one year, in order to facilitate the distribution of critical knowledge surrounding PFAS. This review discusses routes of toxicity as observed in mammalian and cellular models, and the observed human health effects i
The world’s first study of the increase in pollution from landscape fires across the globe over the past two decades reveals that over 2 billion people are exposed to at least one day of potentially health-impacting environmental hazard annually – a figure that has increased by 6.8 per cent in the last ten years.
Human activities are threatening to push the Earth system beyond its planetary boundaries, risking catastrophic and irreversible global environmental change. Action is urgently needed, yet well-intentioned policies designed to reduce pressure on a single boundary can lead, through economic linkages, to aggravation of other pressures. In particular, the potential policy spillovers from an increase in the global carbon price onto other critical Earth system processes has received little attention to date. To this end, we explore the global environmental effects of pricing carbon, beyond its effect on carbon emissions. We find that the case for carbon pricing globally becomes even stronger in a multi-boundary world, since it can ameliorate many other planetary pressures. It does however exacerbate certain planetary pressures, largely by stimulating additional biofuel production. When carbon pricing is allied with a biofuel policy, however, it can alleviate all planetary pressures. In the light of nine Earth Syst